Watch Out For Updates: Understanding the Effects of Model Explanation Updates in AI-Assisted Decision Making

Xinru Wang, Ming Yin Purdue University

Al supports human decision making.

Al supports human decision making.

medical diagnostic

E.g., feature importance explanations

Al gets updated over time.

Al gets updated over time.

new training data

new AI algorithms

new regulations

Al updates can result in changes in its <u>explanations</u>.

old AI model

new AI model

How do end-users of the AI-driven decision aid react to <u>changes in AI explanations</u>, as the AI model gets <u>updated</u>?

old AI model

new AI model

Specifically:

old AI model

new AI model

Specifically:

Can end-users perceive the changes ? Will the changes affect end-users' trust and satisfaction with the AI?

Specifically:

1. Can end-users perceive the changes ?

2. Will the changes affect end-users' trust and satisfaction with the AI?

Task (1/30)

Please review the profile below and predict whether this applicant will default on the loan. *If you don't remember the meaning of a feature, click on the red circle on that feature to view its meaning.*

1. Loan Amount:	0	< \$5,000
2. Issued Month:	0	Sep
Basic Information	abou	t the Applican
3. Annual Income:	0	\$80,000 - \$100,000
4. State of Address	0	Texas
5. Credit Score:	0	Good
6. Month of Earlies Credit Account:	^t O	Sep

Make Your Prediction:

- Do you think this applicant will default on the loan?
- Yes, I think this applicant **will** default on the loan.
- No, I think this applicant **will not** default on the loan.

Machine Learning Prediction:

Our machine learning model predicts that this applicant **will not** default on the loan.

The two features that contributes the most to the model's prediction is **Credit Score (Good) and Loan Amount (< \$5,000)**.

Make your final prediction:

Now, do you think this applicant will default on the loan?

- Yes, I think this applicant **will** default on the loan.
- No, I think this applicant will not default on the loan.

Experimental Procedure

high-similarity update low-similarity update

Experimental Treatments

Explanation Before AI Update:

Experimental Treatments

Explanation Before AI Update:

Explanation After AI Update:

low-similarity

Experimental Treatments

Explanation Before AI Update:

Explanation After AI Update:

low-similarity

Experimental Design

Experiment 2.2: Phase 1 relevant

We obtained users' general common knowledge through a separate pilot study.

Basic Information about the Loan			
1. Loan Amount: 🛛 🔘	< \$5,000		
2. Issued Month: 🛛 🔘	Sep		
Basic Information about the Applicant			
3. Annual Income: 🔵	\$80,000 - \$100,000		
4. State of Address: 🔘	Texas		
5. Credit Score: 🛛 🔘	Good		
6. Month of Earliest Oredit Account:	Sep		

low-similarity update

Measures & Results

1. Can end-users perceive the changes ?

Perceived Explanation Change: self-report after Phase 2

2. Will the changes affect end-users' trust and satisfaction with the AI?

<u>Objective Trust Gain</u>: % human final prediction = AI prediction → Phase 2 – Phase 1

<u>Subjective Trust Gain</u>: self-report \rightarrow Phase 2 – Phase 1

<u>Subjective Satisfaction Gain</u> : self-report \rightarrow Phase 2 – Phase 1

2. Will the changes affect end-users' trust and satisfaction with the AI?

Objective Trust Gain

Subjective Trust Gain

Subjective Satisfaction Gain

Yes, when users have some prior knowledge

 increase / decrease when the new AI
 explanation is consistent /
 inconsistent with the human rationale.

Take Away

As the AI model gets updated,

- End-users can perceive changes in AI explanations
- Changes in AI explanation may change users' subjective perception in the AI model

_		
Ci	- 12)
-		
) </td <td></td>	
	57	

- Design implications for XAI methods in a fast-evolving AI lifecycle
 - Integrating human expertise into the AI explanation updating processes
 - Highlighting the changes in the AI explanation

Thank You!