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ABSTRACT
AI explanations have been increasingly used to help people better
utilize AI recommendations in AI-assisted decision making. While
AI explanations may change over time due to updates of the AI
model, little is known about how these changes may affect people’s
perceptions and usage of the model. In this paper, we study how
varying levels of similarity between the AI explanations before and
after a model update affects people’s trust in and satisfaction with
the AI model. We conduct randomized human-subject experiments
on two decision making contexts where people have different levels
of domain knowledge. Our results show that changes in AI expla-
nation during the model update do not affect people’s tendency to
adopt AI recommendations. However, they may change people’s
subjective trust in and satisfaction with the AI model via changing
both their perceived model accuracy and perceived consistency of
AI explanations with their prior knowledge.
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• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→Machine learning.
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1 INTRODUCTION
AI-driven decision aids have been increasingly deployed to support
human decision making in many activities ranging from making
investment choices, to detecting harmful online content, to annotat-
ing biomedical images. To help people evaluate the trustworthiness
of these decision aids and determine the best strategies to rely on
their recommendations, it is critical to provide people with some
insights into why the AI model underlying the decision aid makes a
particular decision recommendation on a decision making task. To
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this end, many explainable AI (XAI) methods have been designed to
explain the reasoning processes underneath the black-box algorith-
mic decisions. For example, post-hoc techniques such as LIME [70]
and SHAP [58] have been developed to illustrate the importance of
different features to an AI model’s final prediction.

In the real life, however, the AI model underlying the decision
aid is not always static—it may get updated over time. The update
of a model can come as a result of different reasons, such as the
availability of additional or higher-quality training data, the in-
corporation of user feedback, the development of more advanced
learning algorithms, and the needs to ensure fairness in the model.
An increasing number of recent research has started to explore
how end-users of an AI model perceive and react to the model as
it changes over time. For example, it was found that a good first
impression of the AI model is crucial for people to develop trust in
the model [64, 84], while those with sufficient domain expertise are
capable of dynamically adjusting their trust based on their obser-
vations of model performance over time [64]. On the other hand,
novice users who have limited knowledge about AI or machine
learning may expect the AI model to correct its errors and improve
on its own, which reflects their misconceptions of AI models [79].
It was also shown that when the updated AI model has an error
boundary that is “incompatiable” with the old AI model (i.e., the
updated model makes mistakes on cases where the old model used
to be correct), users who make decisions with the help of this AI
model can suffer from a significant decrease in decision making
performance [6].

Beyond the changes in the model’s decision recommendations
and performance, updates in the AI model can also result in changes
in the model’s explanations for why it makes certain recommenda-
tions. For instance, recent studies have reported that when different
learning algorithms are used to train a model, their explanations for
the model’s prediction can be quite different [49, 51]. This means
that after an update, it is possible for the AI model’s explanations to
have a very low level of similarity with the explanations that would
have been provided by the old model. While many empirical studies
have been carried out to understand the effects of AI explanations
on end-users’ interactions with a static AI model in AI-assisted
decision making [7, 19, 52, 56, 63, 87, 91, 95], a natural but currently
under-explored question to ask is, how will changes in the AI expla-
nations caused by a model update impact end-users’ perceptions
and usage of the AI model? Obtaining a solid understanding to
this question can not only advance our empirical knowledge of
people’s interactions with an evolving AI model, but also inform
the appropriate designs of AI explanations during model updates
to ensure a smooth transition of people’s mental models of AI and
minimize the negative unintended consequences, if any.
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Therefore, in this paper, we conduct an experimental study to
empirically examine that in AI-assisted decision making, how end-
users of the AI-driven decision aid react to changes in AI explana-
tions as the AImodel gets updated. Specifically, we ask the following
research questions:

• RQ1: Can end-users perceive changes in model explanations
after a model update?

• RQ2:Will the level of similarity between the updated model’s
explanations and the old model’s explanations change end-users’
trust in and satisfaction with the AI model?

• RQ3: What are the potential mechanisms throughwhich changes
in model explanations affect end-users’ trust in and satisfaction
with an AI model?

Conjecturing the answer to any of these questions turns out to
be quite challenging, and an important moderating factor here can
be the level of prior knowledge the users have in the decision making
domain. For example, one may rightfully conjecture that users will
be able to perceive the AI explanation changes if the explanations
of the updated model is sufficiently dissimilar from the explana-
tions of the old model. However, when users have limited domain
knowledge in the decision making tasks, they may have difficulty
in making sense of the AI explanations [87] and thus can be less
responsive to changes in them. Even if users successfully detect
changes in model explanations, how they will impact users’ trust
in and satisfaction with the AI model is still unclear—competing
hypotheses exist and many factors may play a role in mediating
this impact. One plausible hypothesis is that human users may
not desire a new model explanation that is significantly different
from the old one, since that implies a substantial violation to their
established mental model of the AI model, potentially leading to a
degree of cognitive dissonance [30]. Following this line of thought,
one may expect users to decrease their trust in and satisfaction with
the AI model as its updated explanations become more dissimilar
from the old ones. In contrast, if users generally expect an AI model
to improve its performance after the update [79], it is also possible
for them to use the similarity between the AI explanations before
and after the update as a heuristic to gauge the magnitude of the
improvement. In this case, it is reasonable to hypothesize that users
may consider an updated AI model with more dissimilar explana-
tions as a “better” model with more improvement, and therefore
perceive it as more trustworthy and satisfactory.

To complicate things further, when users have some prior knowl-
edge in the decision making domain, their perceived differences
between the AI explanations before and after the model update may
not only concern the similarity between the two explanations (i.e.,
the “size” of the change), but also whether the updated explanations
become more or less consistent with their domain knowledge com-
pared to the old ones (i.e., the “direction” of the change). Previous
research has shown that for a static AI model, the more its expla-
nations align with the human rationale, the more accurate users
perceive the model to be [63]. However, whether similar observa-
tions can be made when the AI model gets updated is unknown. For
instance, when the AI model’s explanations become less aligned
with users’ domain knowledge after the update, users may consider
the updated model as less “reasonable” and indeed decrease their
trust in and satisfaction with the updated AI model. Yet, users may

also justify this misalignment simply as that due to the update,
the already-trustworthy AI model (because its explanations largely
align with human rationale before the update) further uncovers
new hidden patterns in the data that they are not previously aware
of [76], which may even lead to an increase in their trust in and
satisfaction with the updated model.

To answer these questions, we designed and conducted a set
of human-subject experiments where participants were recruited
from Amazon Mechanical Turk (MTurk) and asked to complete a
same sequence of decision making tasks with the help of an AI
model. The tasks were divided into two phases and the model was
updated between the two phases. All participants used the same AI
model and saw the same AI explanations in Phase 1. However, in
Phase 2, the AI model was updated in different ways for participants
of different treatments, which led to varying levels of similarity
between the updated model’s explanations and the old model’s
explanations. To isolate the impacts of AI explanation changes
before and after the model update on participants’ trust in and
satisfaction with the AI model, for participants across all treatments,
the decision recommendations they received from the AI model
were kept the same for both Phase 1 and Phase 2.

Furthermore, to account for various decision making domains
where users may have different levels of prior knowledge in, we con-
ducted two experiments on two different decision making contexts.
Our Experiment 1 focuses on a decision making context where
laypeople have little domain knowledge in, that is, determining
if a mushroom is poisonous. In our Experiment 2, we look into a
different decision making context in which laypeople have more
domain knowledge—predicting the default risk of loans. In addition,
to cover both the cases where the model update results in the expla-
nations to be more or less consistent with users’ prior knowledge
in the domain1, we conducted two sub-experiments in Experiment
2—in the first sub-experiment (Experiment 2.1), explanations of
the old model presented in Phase 1 were largely inconsistent with
users’ prior knowledge, thus in Phase 2, explanations for updated
models with lower similarity to those of the old model were more
consistent with users’ prior knowledge. In contrast, the second
sub-experiment (Experiment 2.2) was the opposite—explanations
of the old model presented in Phase 1 were largely consistent with
users’ prior knowledge, while in Phase 2, explanations for updated
models with lower similarity to those of the old model were less
consistent with users’ prior knowledge.

Our experimental results show that in both experiments, par-
ticipants can perceive the changes in model explanations after the
AI model gets updated. This means that in general, users have
some capability to detect explanation changes during the model
update regardless of their level of prior knowledge in the deci-
sion making domain. In addition, in both experiments, we find no
reliable evidence suggesting that the changes in AI explanations
during the model update can affect users’ objective trust in the AI
model in terms of how frequently users are willing to adopt the AI
model’s decision recommendations. However, we find that when
users have a degree of prior knowledge in the decision making

1Here, by “users’ prior knowledge”, we mean users’ general common knowledge about
the decision making domain rather than each individual user’s own knowledge. We
obtained users’ general common knowledge about the decisionmaking domain through
a separate pilot study.
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domain, as the AI model gets updated, their subjective trust in and
satisfaction with the AI model will change with the increased or
decreased level of consistency between the new AI explanations
and their prior knowledge. This highlights the importance of taking
the “compatibility” of human rationale and AI explanations into
account when updating AI models to make the model update more
“understandable” to end-users, or to help them understand why
a “counter-intuitive” model update occurs. Finally, through path
analyses, we confirm that the impacts of AI explanation changes on
users’ trust in and satisfaction with the AI model during the model
update are partially mediated by users’ perceived changes in the AI
model’s accuracy, and their perceived changes in the consistency
between the AI model’s explanations and their domain knowledge.

Taken together, our findings provide important implications on
constructing and communicating AI explanations to human users
after upgrading the AI model. Techniques for integrating humans’
domain knowledge into the explanation generation and updating
processes, and for supporting people to make sense of the changes
in explanations after a model update are both promising directions
recommended to explore. We conclude with the discussions of our
study implications and limitations (e.g., simplified AI explanations
and simplified AI model updates resulting in explicit explanation
changes). Despite these limitations, we hope this study can inspire
more future work in empirically understanding the impacts of AI
explanation updates, and in developing explainable AI methods that
better support human-AI joint decision making in a fast-evolving
AI development and deployment lifecycle.

2 RELATEDWORK
2.1 Overview of AI explanation methods
While the widespread applicability of artificial intelligence (AI) tech-
nologies has opened up endless possibilities for real-world impacts,
it also poses new challenges—for example, when AI models are used
to support human decision making, the lack of explanations on the
reasoning processes underlying the AI models can lead to biased
and ill-informed decisions. Researchers, government bodies, and
the media have advocated that data users should have the “right to
explanation” of all decisions made or supported by AI and machine
learning algorithms, as stated by the General Data Protection Reg-
ulation (GDPR) requirements [69]. To increase the interpretability
of AI models, great progresses have been made on the develop-
ment of a variety of techniques for explaining AI. For example,
global explanations aim at explaining the behavior of the entire
AI model, while local explanations provide rationales for specific
model predictions [1, 25, 27]. Explanations can also be divided into
model-specific methods and model-agnostic methods depending on
whether it is designed for a specific type of model. Model-specific
methods often include learning inherently interpretable models
such as rule-based models, generalized additive models, decision
trees and sets [17, 43, 53, 86], as well as visualizing pixels in images
that are most relevant for the predictions given by a deep neural net-
work (e.g., through saliency map) [46, 78, 81, 90]. On the other hand,
examples of model-agnostic methods, which are often referred to as
post-hoc explanations, include global-level feature importance [31],
local feature contribution [59, 71], example-based explanation like

prototypes, influential training instances, and counterfactual exam-
ples [45, 48, 85], and model distillation [13, 38].

2.2 Changes in AI predictions and explanations
after model update

AI models get updated quite often in the real life. This inspires
a growing line of recent research investigating into properties of
the AI model during updates. Earlier work on AI model update
focuses on changes in the model’s predictions. For example, some
researchers have looked into the problem of analyzing changing
trends in continuously learned models [10, 47]. In addition, Bansal
et al. [6] explored the changes in a model’s error boundary after the
AI model’s update. On the other hand, changes in AI explanations
after the model update can also be quite common. A few studies
have been carried out on analyzing the level of disagreement among
AI explanations. For example, Lai et al. [51] compared the agree-
ment level between the feature importance explanations of different
machine leaning models and different explanation methods in text
classification. They found that important features do not always
resemble each other better when two models agree on their predic-
tion labels. Another recent work [62] observed that most of the time
none of their tested explanation methods agrees with each other by
computing rank correlation. Research by Krishna et al. [49] further
formalized and quantified how often explanations disagree with
each other, and they also studied how such disagreements are being
resolved by practitioners in machine learning. While all of these
studies provide important insights into the magnitude of difference
one may expect to see in AI explanations after a model update, how
the changes in model explanations will affect the end-users of the
model, that is, those people who are actually assisted by the AI
model in their decision making, remains largely unclear.

2.3 Empirical studies on AI explanations and
the dynamics of users’ interactions with AI

Empirical studies on AI explanations. A growing number of
empirical studies have been conducted to evaluate how various AI
explanations influence people’s perceptions and usage of AI models
[7, 14, 16, 19, 52, 56, 67, 87, 88, 91, 95]. These studies look into differ-
ent aspects of effects of AI explanations, including how they affect
people’s understandings of the AI model [19, 67, 87, 88], awareness
of AI uncertainty [87, 88, 95], trust in the AI model [14, 65, 95], de-
gree of trust calibration in the AI model [87, 88, 91], and the decision
making performance of the human-AI team [7, 16, 52, 56, 67]. Re-
sults reported in these studies suggest that effects of AI explanations
on people may largely be moderated by factors like the explanation
formats [91], the interactivity of the explanations [19, 56], and the
meaningfulness of the explanations to human users [63]. Another
commonmoderating factor of the effects of AI explanations is users’
domain knowledge in the decision making task [24, 55, 64, 82, 87, 88].
For example, while domain experts were found to be capable of
dynamically adjusting their perceived trustworthiness of an AI
model given its explanations [64], the provision of explanations
may cause lay users who have little domain knowledge to over-rely
the AI model [64, 77]. Wang and Yin [87] found that AI explana-
tions are more effective in improving users’ understanding of the
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AI model and increasing users’ awareness of the uncertainty under-
lying the AI model’s recommendations when people have a higher
level of prior knowledge in the decision making domain. It was also
suggested that the best explanation modality may differ between
domain experts and lay users [82].
Empirical studies on the dynamics of users’ interactions with
AI models. Many recent empirical works have started to study
the dynamics of people’s interactions with the AI model over time
in AI-assisted decision making. For example, Tolmeijer et al. [84]
and Nourani et al. [64] explored how users’ trust in an intelligent
system evolves as they observe the changing trend of the system’s
performance over time, and they both highlighted the importance
of a good first impression of the intelligent system for user trust
to be developed. Other researchers studied how people’s trust in
an AI model changes as the distributions of the decision making
cases shift and the model gets applied to the out-of-distribution
data [20, 56]. Bansal et al. [6] explicitly considered the update of
AI models over time, and examined how changes in an AI model’s
error boundary after the model’s update affect the joint human-AI
team performance in decision making. They showed that when the
updates violate people’s mental models in terms of their expecta-
tions of where the AI recommendations will be right and where
they can go wrong, the team performance is significantly decreased.

Another line of empirical research on the updates of AI model
over time falls under the umbrella of “human-in-the-loop machine
learning” or “interactive machine learning,” where users can pro-
vide feedback to the AI model to potentially improve its perfor-
mance [29]—in other words, the update of the AI model is driven by
the human users’ inputs. These studies often focus on examining
how the possibility to provide feedback to an AI model changes
users’ perceptions of the model. For example, Honeycutt et al. [40]
found that the act of providing interactive feedback to improve an
AI model may negatively impact user’s trust in the model. More
recently, researchers have started to study how AI explanations
can be used to augment humans’ capability in improving the AI
model and influence user experience in interactive machine learn-
ing [34, 50, 54]. For instance, some explanatory frameworks were
proposed to facilitate users’ diagnose of model limitations using
XAImethods [80, 83]. Smith-Renner et al. [79] further demonstrated
that the granularity of user feedback solicited and the provision
of AI explanations should be combined appropriately to create a
positive user experience and maintain user trust in the AI model.
The remaining research gap.We note that most empirical studies
on the effects of AI explanation take a static point of view—the
AI explanations tested in these studies are produced for a single
version of the AI model. However, in real world scenarios, the
development and deployment of AI model is often an iterative
process, resulting in frequent AI model updates. It is therefore
imperative to take a more realistic, dynamic point of view to re-
examine the effects of AI explanations on users’ perceptions and
usage of the AI model during model updates. Meanwhile, while
there have been some recent research on empirically understanding
users’ interaction dynamics with the AI model over time, the focus
of this research is usually on how users get affected by changes in
the AI model’s performance as the model keeps evolving, or how
the provision of explanations may affect users’ impression of the

AI model and ability to improve it. In contrast, knowledge on how
changes in AI explanations itself during the model update may affect
end-users’ perceptions and usage of the AI model in AI-assisted
decision making is largely lacking. Our study thus aims to fill this
gap. As existing studies clearly suggest that users’ prior knowledge
in the decision making domain will influence the ways that users
process the AI explanations, we conduct our study on two different
decision making domains with different levels of domain expertise
requirements, hoping to provide a more nuanced understanding.

3 EXPERIMENT 1: POISONOUS MUSHROOM
PREDICTION

The goal of our study is to empirically understandwhether, how, and
why changes in AI model explanations due to an update affect end-
users’ perceptions and usage of the AI model in AI-assisted decision
making. We begin our study with a first randomized human-subject
experiment on a decision making domain in which people may
have limited domain knowledge.

3.1 Experimental Task
In this experiment, we asked participants to complete a sequence
of decision making tasks to predict whether a mushroom is poi-
sonous or not, with the help of a decision aid powered by an AI
model. Specifically, in each task, participants were asked to review
the profile of a mushroom, which consisted of 5 categorical fea-
tures that describe the mushroom’s physical characteristics—the
surface texture of the cap of the mushroom, the spacing between
the mushroom gills, the shape of the mushroom stalk, the habi-
tat that this mushroom species usually grows on, and the growth
habit of a population of this mushroom species. In addition to the
mushroom’s profile, participants were also presented with a bi-
nary prediction given by our AI model in terms of whether the
mushroom was predicted to be poisonous, along with the model’s
explanations for its prediction (in the form of the top two features in
the mushroom’s profile that contribute the most to the AI model’s
prediction; see more details in Section 3.2). After reviewing all this
information, participants were asked to make a decision on whether
they believed this mushroom was poisonous or not. The mushroom
profiles that we presented to participants were selected from the
UCI mushroom dataset [28], which includes 8,124 North American
mushroom species described in terms of physical characteristics,
with each species identified as either edible or poisonous. In the
original dataset, each mushroom species contains 22 categorical
features. To simplify the decision making task, we reduced the
number of categorical features presented to participants in a profile
to five. Figure 1 shows an example of the task interface.

We chose the poisonous mushroom prediction tasks in our Ex-
periment 1 because we speculated that most participants may not
have much domain knowledge in this task. As a result, when the
AI model as well as its explanations gets updated, participants may
only be able to tell whether the updated model explanations are
consistent with the old ones (i.e., how similar the model explana-
tions are before and after the update), without having strong feel-
ings about whether the updated explanations become more or less
aligned with their prior knowledge, or making further judgements
on whether the explanation updates are sensible or not. Conducting
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Figure 1: An example of the task interface for the poisonous
mushroom prediction task in Experiment 1.

our experiment on this task, thus, allows us to isolate the effects
of model explanation updates on people in AI-assisted decision
making that are caused directly by the similarity levels between
the explanations before and after the model update.

3.2 Experimental Design
3.2.1 Overview of Experimental Treatments. We created three ex-
perimental treatments for Experiment 1. Specifically, all partici-
pants of Experiment 1 went through a sequence of 30 decision
making tasks in the experiment. These 30 tasks were divided into
two phases, each containing 15 tasks. In the first 15 tasks (i.e., Phase
1), participants in all treatments saw the same set of 15 mushroom
profiles, and they were aided by the same AI modelM0. Since all
subjects were given the predictions produced by the same model
M0 in Phase 1, the model explanations they saw in Phase 1 (i.e.,
the top two most “important” features for the AI prediction in each
task) were also the same. Details on how we developed M0 and its
explanations in Phase 1 are described in Section 3.2.2.

After Phase 1, we explicitly told the participants that the AI
model was updated. In the next 15 tasks (i.e., Phase 2), participants
in all treatments still saw the same set of mushroom profiles, but
participants in different treatments used a different version of the
updated AI model (i.e.,M1,M2, orM3). The tasks in Phase 2 were
carefully selected such that different updated AI models still made
the same binary predictions on each task. However, the explanations
of the updated models were different on Phase 2 tasks across the
three treatments, and they exhibited varying levels of similarity
when compared to the model explanations that would have been
provided by the AI model before the update (i.e., M0). In particular,
we had the following three experimental treatments:
• High similarity (HS): Participants in this treatment received
an updated model M1 in Phase 2, whose explanations on Phase
2 tasks had a high similarity with the explanations that would
have been provided by M0 (i.e., the AI model before the update).

• Medium similarity (MS): Participants in this treatment re-
ceived an updated model M2 in Phase 2, whose explanations on
Phase 2 tasks had amedium similarity with the explanations that

would have been provided byM0 (i.e., the AI model before the
update).

• Low similarity (LS): Participants in this treatment received an
updated model M3 in Phase 2, whose explanations on Phase 2
tasks had a low similarity with the explanations that would have
been provided byM0 (i.e., the AI model before the update).

Details on how we operationalized these three treatments in Phase
2 are described in Section 3.2.3.

3.2.2 Operationalization of Phase 1. We randomly selected 50% of
data samples in the original UCI mushroom dataset as the held-out
test dataset, and the rest 50% as the training dataset. Using a random
subset of the training dataset, we first trained a logistic regression
model, which was used as the AI model M0 in Phase 1. We further
adopted the SHAP algorithm [58], which is a model-agnostic ex-
planation method that can be applied to any supervised learning
model, to compute the contribution that each of the five features in
the mushroom’s profile made to the AI model’s prediction on that
task. We then explained the model’s prediction to participants by
highlighting on the mushroom’s profile the feature-value pairs for
the top two features which had the highest contribution scores in
the same direction as the AI model’s prediction2.

Moreover, the goal of Phase 1 was to help participants establish
a mental model of how the AI model makes prediction. Since we
used the top two most important features identified by the SHAP
algorithm as the model’s explanation on each task, it is natural
to expect that participants’ mental model of the AI model’s logic
comes as patterns described by if-then rules, e.g., “if 𝑋1 = 𝑎 and
𝑋2 = 𝑏, then the model will predict 𝑌 = 𝑦.” Thus, the 15 task
instances in Phase 1 were selected so that participants repeatedly
observe three explanation patterns as follows:
• Pattern 1.a:When “cap surface=fibrous” and “gill spacing=crowded”,
the AI modelM0 predicts “edible.”

• Pattern 1.b: When “cap surface=smooth” and “gill spacing=close”,
the AI modelM0 predicts “poisonous.”

• Pattern 1.c:When “stalk shape=enlarging” and “gill spacing=close”,
the AI modelM0 predicts “poisonous.”
In other words, we hope that after participants completed the

15 tasks in Phase 1, they could form their mental models of the AI
model by memorizing these three explanation patterns. We note
that a complete description of the AI modelM0’s global behavior
on all kinds of task instances requires much more explanation
patterns. Here, we selected the task instances to restrict participants’
attention to the above three patterns only and enable them to
develop some mental models of the AI model’s local—instead of
global—behavior.

3.2.3 Operationalization of Phase 2. The goal of Phase 2 was to
have participants in the medium or low similarity treatments realize
that their mental models were “broken down.” This means that
given a task instance in Phase 2, participants in medium or low
similarity treatments might find it to directly relate to their mental
model. Thus, they retrieved an if-then rule from their memory and
2In practice, any explainable methods that can identify the most important features to
the AI model’s predictions can be used. We decided to choose SHAP as our explanation
method because by design, SHAP guarantees local fidelity with the AI model being
explained (i.e., the explanation model’s prediction is always the same as the prediction
of the AI model being explained) and has high level of internal consistency.
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expected that the AI model would predict 𝑌 = 𝑦 on this instance
because 𝑋1 = 𝑎 and 𝑋2 = 𝑏, but only to find out that while the
updated AI model still predicted 𝑌 = 𝑦, the top two feature-value
pairs it highlighted as its explanations (which was again computed
by the SHAP algorithm) were changed.

To obtain different updated AI modelsM1,M2 andM3, whose
explanations on Phase 2 task instances would show different levels
of similarity with those of M0, we re-sampled the training dataset
and re-trained the logistic regression model. For instance, to train
M2—whose explanations on Phase 2 tasks have a medium similarity
with that of M0—we re-sampled the training dataset mostly within
the set of data samples with the feature-value pair “cap surface
= smooth” and then re-trained the logistic regression model. By
doing so, the updated modelM2 would seldom highlight the feature
“cap surface” in its explanations (because most data samples in its
training dataset had the same value on this feature, making it not
informative for the prediction). Thus, given a task instance for
which the old model M0 would use one of the either Pattern 1.a or
Pattern 1.b to explain its predictions, the explanation of the updated
model M2 would likely differ on at least one highlighted feature-
value pair. Note that this kind of model updates can be realistic in
the real world, as the training dataset may constantly get updated
[39], yet the additional training data obtained may be biased (e.g.,
due to sampling biases).

With the updated models prepared, we then move on to select
task instances for Phase 2. Given a task instance, we can compute
the similarity between two AI models’ explanations on this instance
using the feature agreement metric introduced in [49] (i.e., the size
of the intersection of the two sets of top-𝑘 features divided by 𝑘 ;
𝑘 = 2 in our study). We carefully selected the 15 tasks in Phase 2
such that on each task:
(1) all the four AI models’ (i.e., the original modelM0, and the three

updated models M1,M2,M3) binary prediction was the same;
(2) the explanation that would have been provided by the model

M0 is one of the three patterns as shown above;
(3) compared to the two most important feature-value pairs high-

lighted byM0 as its explanations, the explanation given byM1 in
the high similarity treatment was the same (the average feature
agreement score between M0 and M1’s explanations across the
15 tasks in Phase 2 was 1.0), the explanation given byM2 in the
medium similarity treatment usually had one feature-value pair
in common (the average feature agreement score betweenM0
andM2’s explanations across the 15 tasks in Phase 2 was 0.6),
while the explanation given by M3 in the low similarity treat-
ment usually had no feature-value pair in common (the average
feature agreement score between M0 and M3’s explanations
across the 15 tasks in Phase 2 was 0.1)3.

3.3 Experimental Procedure
We posted our experiment as a human intelligence task (HIT) on
Amazon Mechanical Turk (MTurk). Upon arrival, participants were
randomly assigned to one of the 3 experimental treatments as de-
scribed in Section 3.2. They first completed a questionnaire on their
background, including their demographics, technical literacy, and

3See Table A1 in Appendix A for different models’ explanations on the selected 15
Phase 2 task instances in Experiment 1.

expertise in AI and machine learning. Then, we presented partici-
pants with an interactive tutorial to explain the task to them and
walk them through the interface. Since participants might have little
prior knowledge on how to determine if a mushroom is poisonous,
we added a training component in the tutorial to help participants
get familiar with the mushroom prediction task. In particular, we
provided participants with a list of assistive information extracted
from the UCI mushroom dataset about how values on the five
features of a mushroom’s profile may relate to the mushroom’s poi-
sonous status (e.g., “in a large database, 10% of mushrooms whose
gill spacing is crowded are poisonous”). This assistive information
was also made available to participants during the actual 30 deci-
sion making tasks. Upon completion of the tutorial, participants
were asked to answer a few qualification questions to show they
understood all the information presented in the tutorial, and they
could not proceed to the next part of the experiment unless they
answered all the qualification questions correctly.

After passing the qualification, participants started to work on
the same set of mushroom prediction tasks that were divided into
two phases with 15 tasks each (the order of tasks was randomized
within each phase). As discussed earlier, in Phase 1, participants
in all three treatments saw exactly the same model prediction and
explanations for each task. In contrast, in Phase 2, participants
still saw the same model prediction for each task, but the model
explanations were associated with different levels of similarity com-
pared with the explanations provided by the old model used in
Phase 1. In each task, participants followed a three-step procedure
to complete the task. They were first asked to review the profile
of the mushroom to make their own prediction. Then, we would
present to them the AI model’s prediction along with its explana-
tions. Lastly, the participants needed to make a final prediction.
The AI models made correct predictions on 10 tasks in Phase 1 and
on 12 tasks in Phase 2, although the participants were not given
any accuracy feedback on either their prediction or the model’s
prediction throughout the experiment.

Note that between Phase 1 and Phase 2, we explicitly told partic-
ipants that the AI model was updating and asked them to complete
a mid-point questionnaire while waiting for the model update to be
completed. To see if the participant successfully formed a mental
model of the AI model in Phase 1, we included in the questionnaire
three multiple-choice understanding questions, each corresponding
to one of the three explanation patterns appeared in Phase 1 (e.g.,
“If a mushroom’s cap surface is smooth and its gill spacing is close,
what is our machine learning model’s prediction?”). In addition,
the participant was also asked to self-report their subjective trust
in and satisfaction with the AI model in Phase 1 on a 7-point Likert
scale (1 is the lowest and 7 is the highest), and they also indicated
their agreement with the following statement from 1 (“strongly
disagree”) to 7 (“strongly agree”):

• Perceived explanation consistency with prior knowledge:
“The machine learning model’s explanations in Phase 1 agrees
with my own knowledge about how to predict poisonous mush-
room.”

To make participants feel the update of the AI model was real, after
participants completed the mid-point questionnaire, we had them
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wait for 10 more seconds before telling them that the model update
was completed and allowing them to proceed to Phase 2.

Finally, after the participant completed Phase 2, they needed to
complete an exit questionnaire to again self-report their subjective
trust in and satisfaction with the AI model in Phase 2, as well as
their perceived consistency of the AI model’s explanations in Phase
2 with their own prior knowledge on a 7-point Likert scale. They
were also asked to express their agreement with two statements
regarding their perceived changes of the AI model after the update,
using a scale of 1 (“strongly disagree”) to 7 (“strongly agree”):
• Perceived explanation change: “After the model update, the
updated model in the last 15 tasks utilizes very different features
to make predictions compared to the old model shown in the
first 15 tasks.”

• Perceived accuracy change: “The updated machine learning
model in the last 15 tasks seems to be more accurate than the
old machine learning model in the first 15 tasks.”
We included three attention check questions at different places

throughout the HIT (one each in Phase 2 prediction tasks, the mid-
point questionnaire, and the exit questionnaire). In these questions,
participants were instructed to select a pre-specified option as their
prediction in the task or as their response to a 7-point Likert ques-
tion in the questionnaire. These attention check questions later
helped us to filter out the data from inattentive participants. Our
experiment was open to U.S. workers only, and each worker was al-
lowed to participate only once. The base payment of the experiment
was $1.80. To incentivize participants to carefully read about the
model’s explanation in each task and adjust their trust accordingly,
we further provided them with additional performance-contingent
bonuses—if the overall accuracy of a participant’s final predictions
on the 30 tasks was at least 55%, they could earn a bonus of $0.04 for
each of their correct final predictions. Thus, the maximum amount
of bonus a participant could earn in this experiment was $1.20.

3.4 Analysis Methods
3.4.1 Independent Variables. The main independent variable we
used in our analysis is the experimental treatment that a participant
was assigned to, i.e., the level of similarity between the explanations
of the updated AI model that the participant received in Phase 2
and the explanations of the AI modelM0 used in Phase 1.

3.4.2 Dependent Variables. To quantify participants’ perceived
changes in the model explanations due to the model update, we use
their self-reported scores in the exit questionnaire as our dependent
variable; the higher the score, the more the participant finds the
updated model explanations in Phase 2 to be different from what
would have been provided by the old model in Phase 1.

Moreover, to measure the changes in participants’ trust in the
model due to the model update, we compute their trust gain from
Phase 1 to Phase 2, for both objective trust and subjective trust.
Participants’ objective trust in the model in a phase is computed
as the fraction of tasks of that phase in which the participant’s
final prediction was the same as the model’s prediction. Meanwhile,
participants’ subjective trust in the model in a phase is obtained
from their self-reports at the end of that phase. Given a participant’s
objective trust or subjective trust scores in both phases, their trust
gain is then computed as the Phase 2 trust score minus the Phase

1 trust score; the larger the difference, the more the participant
increased their trust in the model after the model update.

Finally, to measure the changes in participants’ satisfaction of the
model due to the model update, we compute their satisfaction gain
from Phase 1 to Phase 2 as their self-reported satisfaction with the
model in Phase 2 in the exit questionnaire minus that reported for
Phase 1 in the mid-point questionnaire. Again, the higher the value,
the more the participant increased their satisfaction with the model
after the model update.

3.4.3 Statistical Methods. We start by examining that after a model
update, whether participants can perceive the changes in model
explanations (RQ1) and whether the perceived model explanation
similarity before and after the update changes participants’ trust in
and satisfactionwith the AImodel (RQ2). To avoidmultiple compar-
ison problems and control false discovery, we conduct our analyses
using the interval estimate method [26]. That is, we first visualize
our data by plotting the mean values of the dependent variables of
interest for each treatment along with the 95% bootstrap confidence
intervals (𝑅 = 5000). Then, we construct OLS regression models
to predict the dependent variables’ values while controlling for
covariates (e.g., participants’ demographics), both for the entire set
of participants and for the subset of participants who had different
levels of understandings of how the AI model worked after Phase 1
(e.g., the subsets of participants who answered different numbers of
understanding questions correctly in the mid-point questionnaire).
Results of these models are interpreted via the estimated coefficient
values for the independent variables as well as their 95% bootstrap
confidence intervals4.

Next, to explore RQ3 (i.e., the mechanism underlying the effects
of model explanation updates on end-users’ trust in and satisfaction
with an AI model), we posit three hypotheses and illustrate our
hypothesized model in Figure 2:

• [H1.1] The similarity level of model explanations before and
after the model update (i.e., between Phase 1 and 2) has a direct
effect on participants’ perceived change in the model explana-
tions.

• [H1.2] Participants’ perceived change in the model explanations
has a direct effect on their perceived change in the AI model’s
accuracy after the model update.

• [H1.3] After the model update, participants’ perceived change
in the AI model’s accuracy directly affects their objective and
subjective trust in the AI model, and their satisfaction with the
AI model.

In other words, we hypothesize that the effects of model explana-
tion updates on end-users’ trust in and satisfactionwith an AImodel
are mediated by their perceived similarity between the explanations
of the updated model and the old model, and their perceived change
in the model’s accuracy. Since participants are not likely to have
much domain knowledge in the mushroom prediction task, in this
experiment, we do not expect the model explanation updates will
affect participants’ trust in and satisfaction of the AI model through

4We applied standardization to the dependent variables and encoded independent
variables (IV) using dummy coding, thus the estimated coefficient of an IV could
be directly interpreted as the change in dependent variable (in terms of standard
deviations) resulted from the corresponding treatment.
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Figure 2: Our hypothesized model of how explanation up-
dates of the AI model affect participants’ trust of and satis-
faction with the AI model in Experiment 1, which involves
a task domain that participants do not have much domain
knowledge in.

influencing their perceived change in the consistency between the
model explanations and their domain knowledge.

We perform path analysis [22], a type of structural equation
modeling (SEM) [41, 60, 72] without latent variables, to test these
hypotheses and explore the potential causal mechanisms underly-
ing the effects of model explanation updates5. We use five indicators
to evaluate the goodness of fit of the model: (1) the 𝜒2 test indi-
cating absolute/predictive fit; (2) the Comparative Fit Index (𝐶𝐹𝐼 ),
(3) the Tucker–Lewis Index (𝑇𝐿𝐼 ) indicating comparative fit, (4)
the Root Mean Square Error of Approximation (𝑅𝑀𝑆𝐸𝐴), and (5)
the Standardized Root Mean Square Residual (𝑆𝑅𝑀𝑅). A model fits
the data well when the 𝑝-value associated with the 𝜒2 test is non-
significant, the CFI and TLI values are over 0.90, and the RMSEA
and SRMR values are below 0.08 [9, 11, 21].

Since this set of path analysis is mostly meaningful for those
people who actually had formed an accurate mental model of how
the AI model worked, for RQ3, we restrict our analysis only on the
data obtained from those participants who correctly answered all
three understanding questions in the mid-point questionnaire.

3.5 Experimental Results
In total, 475 participants completed our experiment HIT. The me-
dian time participants spent on the experiment was 12.5 minutes,
leading to a median hourly wage of $11.00. After filtering the data
from participants who did not pass the attention check, we were left
with valid data from 361 participants for Experiment 1 (49.9% male,
the average age is 38). We analyze these valid data to answer our
research questions. As a sanity check, we first construct an OLS re-
gression model to examine whether there are any differences across
the three treatments regarding participants’ perceived changes in
how consistent the model explanations are with their own prior
knowledge, utilizing their self-reports at the end of Phase 1 and
Phase 2. We do not find any reliable differences, which is consistent
with our expectation.

3.5.1 RQ1: Effects on perceived explanation change. We start by ex-
amining participants’ perceived change of the model explanations
between Phase 1 and Phase 2. Figure 3(a) compares across the three

5The R package Lavaan [74] is used to estimate the paths in the hypothesized model,
which allows simultaneous testing of magnitude as well as significance of the com-
plex predictive relationships between a set of observed variables, and the maximum
likelihood estimation (MLE) method is used.

treatments participants’ perceptions of the model explanation’s
change (see the “overall” group). To explore whether participants’
understanding of the AI model (or their capability to form an ac-
curate mental model of AI) has any moderating effect, we also
present the same comparison separately for participants with rel-
atively low levels of understanding (i.e., who answered no more
than 2 understanding questions correctly in the mid-point question-
naire; the “understanding ≤ 2” group), and those with high levels
of understanding (i.e., who answered all 3 understanding questions
correctly; the “understanding=3” group). We find that participants’
perceived change of explanations increased as the the explanations
of the updated model in Phase 2 became more dissimilar from those
of the old model used in Phase 1. In other words, participants in
our experiment could perceive the change in model explanations
brought up by a model update. Moreover, it appears that the better
the participants could form an mental model of the AI model, the
more they could perceive the change in model explanations.

We then construct OLS regression models to predict a partici-
pant’s perceived change in the model explanations between the
two phases while controlling the participant’s demographic back-
ground (e.g., age, gender, education). as covariates. Our regression
results are consistent with what we have observed in Figure 3(a).
In particular, participants in both the medium and low similarity
treatments reported higher levels of changes in the model explana-
tions due to the model update (MS: estimated coefficient 𝛽 = 0.232,
95% CI=[0.017, 0.461]; LS: 𝛽 = 0.202, 95% CI=[-0.025, 0.432]). We
further construct two separate regression models for participants
who answered no more than 2 understanding questions correctly
in the mid-point questionnaire and those who answered all 3 under-
standing questions correctly, respectively. For the former group of
participants (the “understanding≤2” group), we do not obtain coeffi-
cients that are reliably different from zero, while for the latter group
(the “understanding=3” group), we find that they reported a slightly
higher level of perceived model explanation change if they were in
the low similarity treatment (𝛽 = 0.429, 95% CI=[-0.022,0.869]).

3.5.2 RQ2: Effects on trust and satisfaction change. We next analyze
our data to examine whether people’s trust in and satisfaction
with the AI model is influenced by the model explanation updates.
Figures 3(b) and 3(c) show participants’ objective trust gain and
subjective trust gain in the AI model from Phase 1 to Phase 2, both
across all participants and within subgroups of participants with
different levels of understanding of the AI model. However, we find
that neither participants’ objective trust nor their subjective trust
seems to be affected by the similarity level of model explanations
between Phase 1 and Phase 2. Figure 3(d) further shows participants’
subjective satisfaction gain from Phase 1 to Phase 2, conditioned
on their understanding score. Still, participants did not seem to
significantly change their satisfaction with the AI model as the
similarity of model explanations before and after the update varied.
Our regressionmodels also don’t show any reliable treatment effects
either for all participants or for any subsets of participants.

3.5.3 RQ3: Mechanisms underlying the effects of model explana-
tion updates. As discussed earlier, we restrict our attention to the
98 participants who correctly answered all three understanding
questions in the mid-point questionnaire, and we test the hypoth-
esized path model on the data obtained from them. We start by
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(a) Perceived explanation change (b) Objective trust gain

(c) Subjective trust gain (d) Satisfaction gain

Figure 3: Comparing how the similarity level between the model explanations before and after the update affects participants’
perceived change of model explanations, the objective and subjective trust gain in the AI model, as well as the satisfaction gain
with the AI model in Experiment 1. Error bars represent 95% bootstrap confidence intervals.

Figure 4: Path analysis results of the proposed model in Ex-
periment 1. Standardized path coefficients are reported, and
*, **, *** represent significance level of 𝑝 < 0.05, 𝑝 < 0.01 and
𝑝 < 0.001, respectively.

adding all covariates (i.e., the participant’s age, gender, education,
task familiarity, technical literacy and expertise in AI and machine
learning) to the regression models for all paths, and we refine the
regression models by pruning covariates with insignificant con-
tributions to achieve better model fit. As a result, the fit statistics
for the final model we get are 𝑝 (𝜒2) = 0.240,𝐶𝐹𝐼 = 0.971,𝑇𝐿𝐼 =
0.932, 𝑅𝑀𝑆𝐸𝐴 = 0.047, 𝑆𝑅𝑀𝑅 = 0.051, which indicate a good fit.
Estimates of the path coefficients and the results of significance
testing of the path model are presented in Figure 4.

Our path analysis results validate all of our hypothesesH1.1–
H1.3. It’s shown that the first mediation step of the treatment effects
is whether people can perceive the change in model explanations
after a model update, and in Experiment 1, we detect that those
participants for whom the updated model explanations in Phase
2 had a low similarity with the old model in Phase 1 perceived a
significantly larger change in the model explanations. Interestingly,
the more people perceive the model explanations have changed,
the more likely they feel the updated model’s accuracy is increased.
Finally, the change in people’s trust in and satisfaction with the AI
model after the update are all positively affected by their perceived
increase in the updated AI model’s accuracy. Notably, while all

mediation paths in our path analysis are significant, we do not
observe a total effect of the treatment on participants’ trust gain or
satisfaction gain in Section 3.5.2, which seems to be contradictory.
We conjecture that one possible explanation for this observation is
that there may exist other competing effects that suppress the path
that we have tested in our path analysis, such that multiple direct
and indirect effects of opposing direction can result in a near-zero
total effect [3, 37, 75]. Identifying the additional mediation paths
for the effects of model explanation updates on changes in people’s
trust in and satisfaction with the AI model will be an interesting
future work.

4 EXPERIMENT 2: LOAN DEFAULT
PREDICTION

In the second experiment of our study, we move on to examine
whether the effects of AI model explanations updates on end-users’
perceptions and usage of the AI model in AI-assisted decision mak-
ing will be different if users have more prior knowledge in the
decision making domain. Therefore, in this experiment, we repli-
cate Experiment 1 on a different decision making domain in which
people have some domain knowledge.

4.1 Experimental Task
In this experiment, we asked participants to complete a sequence of
decision making tasks to predict loan default risks with the help of
a decision aid powered by an AI model. We chose the loan default
risk prediction task for our second experiment because we conjec-
tured that people might perceive themselves as having a degree of
domain knowledge in solving this type of task, because they could
apply their day-to-day, common sense knowledge to make their
predictions. Specifically, in each task, the participant was presented
with the profile of a loan application consisting of six features—the
amount and the issued month of the loan, as well as the applicant’s
annual income, state of living address, credit score, and the month
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when the applicant’s earliest credit account was open (see Sec-
tion 4.2.1 for details on how we decided to include these features in
the profile of each task). Moreover, we also showed to participants
the binary prediction given by an AI model in terms of whether
this loan applicant would default on their loan. After reviewing all
this information, participants were asked to make a decision on
whether they believed this loan applicant will default on the loan
or not. Loan applicant profiles that we showed to participants in
the experiment were taken from a public dataset that records the
loan information of a peer-to-peer lending platform, LendingClub
[92]. To simplify the problem as a binary prediction, we restricted
our attention only to those cases where the loan applicant either
fully paid back the loan or defaulted on the loan. To simplify the
task, we also discretized all features with continuous values (e.g.,
the applicant’s annual income) into categories.

4.2 Experimental Design and Procedure
4.2.1 A pilot study to collect people’s general knowledge about loan
default prediction. In a task domain that people have some domain
knowledge in, people’s perceptions of and reactions to anAImodel’s
explanation updates may be influenced by their judgements of how
“sensible” the explanation updates are. One possible way for them
to make these judgements is to compare the model’s explanations
with their prior knowledge about the decision making task, before
and after the model update. So, before we start the design of our
Experiment 2, it is critical for us to first obtain an understanding of
people’s general knowledge about making loan default risk predic-
tions (e.g., what features do people usually consider as informative
for making loan default predictions?).

Therefore, we conducted a pilot study to understand in loan
default risk prediction tasks, how relevant people considered dif-
ferent pieces of information was for predicting the default risk of
a loan applicant. In this pilot study, each participant was asked to
complete a sequence of 10 loan default risk prediction tasks, and in
each task they reviewed a loan application profile consisted of 13
features selected from the original LendingClub dataset—the loan’s
amount, issued month, monthly installment, interest rate, purpose,
and the number of months to pay off the loan, as well as the ap-
plicant’s state of living address, annual income, credit score, home
ownership status, total number of credit accounts, the number of
years employed, and the month when their earliest credit account
was open. We then asked the participant to indicate how relevant
they thought each feature was for determining a loan applicant’s
likelihood of defaulting on a loan, in three different ways:
(1) Multiple-choice: Assign each feature into one of the three

categories: 1 (irrelevant), 2 (not sure), or 3 (relevant)
(2) Ranking: Rank the relevance of all features from most relevant

to least relevant
(3) Likert-scale: Rate each feature on a 10-point scale from 1 (not

relevant at all) to 10 (extremely relevant)
In total, we collected survey responses from 184 MTurk workers
and then aggregated their responses. For Questions (1) and (3),
we ranked all features based on the mean ratings participants re-
ported for them. For Question (2), we used the majority aggregator
[73] and Kemeny-Young aggregator [8, 44, 94] to aggregate all the
rankings. Based on the 4 aggregated rankings of features that we

obtained from different questions or different aggregation methods,
we identified the sets of features that were consistently considered
by our participants as most or least relevant for predicting the loan
default risk (i.e., consistently appear at the top or bottom of the
4 aggreagated rankings)—the issued month of the loan, the appli-
cant’s state of address, and the month of the applicant’s earliest
credit account were consistently considered as least relevant for
predicting loan default risk, while the loan amount, the applicant’s
annual income and credit score were consistently deemed as most
relevant for the prediction. We thus included these 6 features in
the final loan application profile of each task in Experiment 2, and
we leveraged the differences in people’s perceived relevance of
different features to design our experiment.

4.2.2 Experimental Treatments. Similar as that in Experiment 1,
we again created experimental treatments by varying the level of
similarity between the AI model’s explanations before and after
the model update. However, for decision making tasks that people
have some domain knowledge in, depending on how much people
consider the explanations of the AI model before the update align
with their prior knowledge in the domain (i.e., how “sensible” the
explanations before the update are), a more dissimilar model ex-
planation after the model update could imply either increased or
decreased level of consistency between the AI explanations and
people’s knowledge.

Therefore, we conducted two sub-experiments in our Experi-
ment 2. In both sub-experiments, we again created three experi-
mental treatments—high similarity (HS), medium similarity (MS),
and low similarity (LS). Across the three treatments in the same
sub-experiment, participants completed the same set of 30 predic-
tion tasks divided into two phases of 15 tasks each—in Phase 1,
participants in all three treatments used the same AI modelM0 (i.e.,
a logistic regression model); in Phase 2, participants in different
treatments used different updated versions of the modelM0, which
made the same binary predictions but provided different explana-
tions. Importantly, in the first sub-experiment (i.e., Experiment
2.1), explanations of the AI model shown in Phase 1 largely con-
tradicted with people’s general knowledge about loan default risk
predictions such that in Phase 2, the lower explanation similarity im-
plied the updated explanations to be more consistent with people’s
domain knowledge. The second sub-experiment (i.e., Experiment
2.2) was exactly the opposite—the AI model’s explanations shown
in Phase 1 were highly consistent with people’s domain knowledge,
and in Phase 2, the less similar the updated model’s explanations
compared to M0, the more inconsistent they were with people’s
domain knowledge.

More specifically, in Phase 1 of Experiment 2.1, the 15 task in-
stances in Phase 1 were carefully selected so that participants re-
peatedly observed the following three explanation patterns:

• Pattern 2.1.a: When “state of address=California” and “month of
earliest credit account=August”, the AI modelM0 predicts “will
not default.”

• Pattern 2.1.b: When “state of address=California” and “issued
month=March”, the AI modelM0 predicts “will not default.”

• Pattern 2.1.c: When “state of address=Alabama” and “issued
month=June”, the AI modelM0 predicts “will default.”
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In all these patterns, the features being selected as contributing
the most to the AI modelM0’s predictions were all considered as
irrelevant for the predictions by participants in our pilot study. So,
we expected participants of Experiment 2.1 to perceive the explana-
tions of the AI model in Phase 1 to be highly inconsistent with their
domain knowledge. Then, for the 15 task instances selected for
Phase 2 of Experiment 2.1, the updated AI model’s explanations in
the high similarity treatment were exactly the same as what would
have been provided by M0. In contrast, the updated AI model’s
explanations in the medium (low) similarity treatment often shared
one (no) feature in common with what would have been provided
by M0, while the removed features in the explanations were re-
placed by other features that people considered to be relevant for
the predictions. As a result, the feature agreement scores of the
updated explanations and the old explanations were 1.0, 0.5, and
0.07, for high, medium, and low similarity treatments, respectively6.

For Experiment 2.2, the explanation patterns participants kept
observing in Phase 1 were:
• Pattern 2.2.a: When “credit score=good” and “annual income
=$40,000–$60,000”, the AI modelM0 predicts “will not default.”

• Pattern 2.2.b: When “credit score=good” and “loan amount=
<$5,000”, the AI modelM0 predicts “will not default.”

• Pattern 2.2.c: When “credit score=fair” and “annual income=
<$40,000”, the AI modelM0 predicts “will default.”
Here, the features being selected in the explanations were all

relevant for the predictions based on our pilot study, so we expected
participants of Experiment 2.2 to consider the explanations of the AI
model in Phase 1 to be highly consistent with their domain knowl-
edge. Again, on each of the Phase 2 tasks, the number of features
in the updated AI model’s explanations that were in common with
what would have been provided by M0 was two, roughly one, and
roughly zero for the high, medium, and low similarity treatments,
respectively—the differences were caused by some or all relevant
features included in the old explanations being replaced by the irrel-
evant ones. Thus, for high, medium, and low similarity treatments,
the feature agreement scores of the updated explanations and the
old explanations were 1.0, 0.5, and 0.03, respectively7.

4.2.3 Experimental Procedure. In Experiment 2, the procedure for
both sub-experiments was the same as that for Experiment 1, except
for that participants of Experiment 1 were not allowed to take part
in Experiment 2 again.

4.3 Analysis Methods
We used the same independent variables and dependent variables
as those used in Experiment 1, as well as the statistical methods
for RQ1 and RQ2 (see Section 3.4). For RQ3, we posit a few new
hypotheses on how model explanation updates may affect end-
users’ trust in and satisfaction with an AI model, when they have
some prior knowledge in the decision making domain:
• [H2.1] The similarity level of model explanations before and
after the model update (i.e., between Phase 1 and Phase 2) has

6See Table A2 in Appendix A for different models’ explanations on the selected 15
Phase 2 task instances in Experiment 2.1.
7See Table A3 in Appendix A for different models’ explanations on the selected 15
Phase 2 task instances in Experiment 2.2.

Figure 5: Our hypothesized model of how explanation up-
dates of the AI model affect participants’ trust in and satis-
faction with the AI model in Experiment 2, which involves a
task domain that participants have some domain knowledge
in.

a direct effect on participants’ perceived change in the model
explanations.

• [H2.2] Participants’ perceived change in the model explanations
has a direct effect on their perceived change in how consistent the
model explanations are compared to their domain knowledge.

• [H2.3] Participants’ perceived change in the AImodel’s accuracy
after the model update is affected by both their perceived change
in the model explanations, and their perceived change in the
model explanation’s consistency with their domain knowledge.

• [H2.4] After the model update, participants’ perceived changes
in both the model explanation’s consistency with their domain
knowledge and the AI model’s accuracy jointly affect their ob-
jective trust and subjective trust in the AI model, and their satis-
faction with the AI model.
The hypothesized model is shown in Figure 5. Compared to the

hypothesized model in Experiment 1, here, we conjecture that the
effects of model explanation updates is also mediated by partici-
pants’ perceived change of the model explanation’s consistency
with their domain knowledge. This mediator is computed as par-
ticipants’ self-reported explanation consistency with their prior
knowledge in Phase 2 minus their self-reported rating in Phase 1.

Since we have two sub-experiments in Experiment 2 (i.e., two
“groups” of experimental data), we use multigroup path analysis
[5, 35] to compare the results of them and to test how different
types of explanation updates in the two sub-experiments moder-
ate the associations between explanation updates and users’ trust
in and satisfaction with an AI model8. In particular, multigroup
path analysis begins with the estimation of two models: A fully
unconstrained model in which all parameters are allowed to differ
between groups, and a fully constrainedmodel in which the value of
each parameter is held the same across groups. If the two estimated
models are not significantly different, and the latter fits the data
well, it implies that there is no variation in the path coefficients
by group. In this case, we will report the output from the fully
constrained model. However, if these two estimated models are sig-
nificantly different, we will go through a series of steps to test which
parameters need to be unconstrained across groups by relaxing

8By specifying the group argument in the R package Lavaan [74], we are able to
control whether the estimated path coefficients can vary across multiple groups (i.e.,
data collected from the two sub-experiments).



CHI ’23, April 23–28, 2023, Hamburg, Germany Xinru Wang and Ming Yin

(a) Perceived explanation change (Experiment 2.1: Phase 1 irrelevant) (b) Perceived explanation change (Experiment 2.2: Phase 1 relevant)

Figure 6: Participants’ perceived change ofmodel explanations between Phases 1 and 2 in the two sub-experiments of Experiment
2. Error bars represent 95% bootstrap confidence intervals.

the constraint on one parameter at a time and testing the differ-
ence in fit between the fully constrained model and the partially
constrained model (where a single parameter is unconstrained).
Generally, the more constrained model will fit the data worse than
a partially constrained model. Thus, for each parameter, we use a
Chi-squared test to examine if the model fit improves significantly
as a result of relaxing the constraint on that parameter—If yes, we
assume that parameter is non-invariant (i.e., unequal) across groups;
otherwise, we assume that parameter is invariant (i.e., equal) across
groups. After identifying non-invariant parameters, we can test a
final model where invariant parameters are constrained to be equal
across groups while non-invariant parameters are freely estimated.

4.4 Experimental Results
494 participants completed Experiment 2.1, and 507 completed
Experiment 2.29. After filtering out inattentive participants, in total,
we obtained valid data from 394 (58.4% male, the average age is
37) and 412 participants (55.1% male, the average age is 36) for
Experiment 2.1 and 2.2, respectively. We analyze these data to
answer our research questions.

To first confirm the validity of our experimental design, we con-
duct OLS regressions to understand how participants’ perceived
changes in the model explanation’s consistency with their prior
knowledge vary across treatments within each sub-experiment.
Results of these regressions indicate that in both sub-experiments,
the direction of participants’ perceived change in the model ex-
planation’s consistency with their prior knowledge aligns with
our expectations. For example, we find that in Experiment 2.1,
participants with highest understanding score in the low similar-
ity treatment noticed that the updated model explanations were
more consistent with their domain knowledge (𝛽 = 0.751, 95%
CI=[0.006, 1.484]), while in Experiment 2.2, participants with high-
est understanding score in the low similarity treatment considered
the updatedmodel explanations as less consistent with their domain
knowledge (𝛽 = −0.700, 95% CI=[-1.332, -0.043]).

4.4.1 RQ1: Effects on perceived explanation change. Figure 6(a) and
Figure 6(b) show participants’ perceived change in the model expla-
nations between Phase 1 and Phase 2 for the two sub-experiments,
respectively. Again, we find that in both sub-experiments, partici-
pants could sense the differences in themodel explanations between
Phase 1 and Phase 2, especially those who could develop an accurate

9In Experiment 2.1, the median time participants spent on the experiment was 12.8
minutes, and the median hourly wage participants earned was $10.3. In Experiment
2.2, the median completion time and median hourly wage were 11.3 minutes and $11.9,
respectively.

mental model of the AI model’s logic. The regression models reveal
similar results: In Experiment 2.1, participants in both medium
and low similarity treatments reported significantly higher levels
of perceived changes in model explanations (MS: 𝛽 = 0.285, 95%
CI=[0.057,0.510]; LS: 𝛽 = 0.422, 95% CI=[0.174,0.688]). Conducting
separate regressions on the group of participants who answered
no more than 2 understanding questions correctly and the group
of participants who answered all 3 understanding questions cor-
rectly, we find that the higher levels of perceived changes in the
model explanation were only reported by participants in the latter
group (MS: 𝛽 = 0.904, 95% CI=[0.475,1.344]; LS: 𝛽 = 0.980, 95%
CI=[0.613,1.383]). For participants in Experiment 2.2, we don’t find
any reliable main effects of the treatments on people’s perceived
change in model explanations across all participants. However, by
restricting our attention only to participants who answered all 3 un-
derstanding questions correctly, we find those in the low similarity
treatment clearly detected higher levels of changes in the model’s
explanation after the update (𝛽 = 0.483, 95% CI=[0.048,0.929]).

4.4.2 RQ2: Effects on trust and satisfaction change. Next, we exam-
ine whether participants’ trust in the AI model, as well as their sat-
isfaction with the model, changes with the similarity level between
the model explanations before and after the update. Figure 7 shows
the comparison results on participants’ objective and subjective
trust gain, while Figure 8 compares participants’ satisfaction gain
across treatments. Visually, it appears that in both sub-experiments,
participants did not change their objective trust in the AI model,
regardless of how similar or different the updated model explana-
tions were compared to the old model (Figure 7(a), 7(c)). In contrast,
people’s subjective trust in the AI model or subjective satisfaction
with the AI model is largely affected by the explanation similarity
between the two phases—in Experiment 2.1, when the more dissim-
ilar explanations involve more relevant features and become more
consistent with participants’ domain knowledge after the update,
both participants’ subjective trust and satisfaction increased as the
similarity level of model explanations between Phase 1 and Phase
2 decreased (Figure 7(b), 8(a)); while in Experiment 2.2, when the
more dissimilar explanations involve more irrelevant features and
become less consistent with participants’ domain knowledge after
the update, participants’ subjective trust and satisfaction decreased
as the similarity level of model explanations between Phase 1 and
Phase 2 decreased (Figure 7(d), 8(b)). Furthermore, it appears that
the treatment effects on participants’ subjective trust and satisfac-
tion changes between the two phases mainly come from partici-
pants who answered all 3 understanding questions correctly in the
mid-point questionnaire.
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(a) Objective trust gain (Experiment 2.1: Phase 1 irrelevant) (b) Subjective trust gain (Experiment 2.1: Phase 1 irrelevant)

(c) Objective trust gain (Experiment 2.2: Phase 1 relevant) (d) Subjective trust gain (Experiment 2.2: Phase 1 relevant)

Figure 7: Comparing how the similarity level between the model explanations before and after the update affects participants’
objective and subjective trust gain in the AI model, for the two sub-experiments of Experiment 2. Error bars represent 95%
bootstrap confidence intervals.

(a) Satisfaction gain (Experiment 2.1: Phase 1 irrelevant) (b) Satisfaction gain (Experiment 2.2: Phase 1 relevant)

Figure 8: Comparing how the similarity level between the model explanations before and after the update affects participants’
subjective satisfaction gain with the AI model, for the two-experiments of Experiment 2. Error bars represent 95% bootstrap
confidence intervals.

The OLS regression models reveal consistent results. We find no
reliable effects of the explanation similarity on participants’ objec-
tive trust gain after the model update, even for participants with the
highest understanding scores. On the other hand, in Experiment 2.1,
participants’ subjective trust in the model significantly increased in
the LS treatment (𝛽 = 0.266, 95% CI=[-0.004,0.530]), and this effect
mainly comes from participants who answered all understanding
questions correctly (LS: 𝛽 = 0.523, 95% CI=[0.066,0.965]). Similarly,
participants’ satisfaction with the AI model significantly increased
in the LS treatment (𝛽 = 0.378, 95% CI=[0.124,0.631]), and for par-
ticipants with the highest understanding scores the effect size is
even larger (𝛽 = 0.685, 95% CI=[0.215,1.140]). For Experiment 2.2,
the signs for all the estimated coefficients of the treatment’s effects
are reversed. For example, participants’ subjective trust and satis-
faction in the model both decreased in lower similarity treatments
(subjective trust—LS: 𝛽 = −0.203, 95% CI=[-0.412,0.015]; subjective
satisfaction—MS: 𝛽 = −0.248, 95% CI=[-0.474,-0.022]; subjective
satisfaction—LS: 𝛽 = −0.385, 95% CI=[-0.598,-0.169]). Again, similar
but larger effects are found from the subset of participants with
the highest understanding scores (subjective trust—LS: 𝛽 = −0.521,
95% CI=[-0.901,-0.103]; subjective satisfaction—MS: 𝛽 = −0.474,
95% CI=[-0.818,-0.125]; subjective satisfaction—LS: 𝛽 = −0.608, 95%
CI=[-0.978,-0.200]).

4.4.3 RQ3: Mechanisms underlying the effects of model explanation
updates. Lastly, we explore the mechanisms underlying the effects
of model explanation updates on end-users’ trust in and satisfaction
with the AI model when they have some prior knowledge in the
decision making domain. Based on our hypothesized path model,
we conduct multigroup path analyses on the data obtained from
those participants who correctly answered all three understanding
questions in the mid-point questionnaire (112 participants and 120
participants in Experiment 2.1 and Experiment 2.2, respectively).

Our multigroup path analyses first suggest that across the two
sub-experiments, four effects are detected to be the same, that is, the
coefficients on 4 paths are invariant across the two sub-experiments.
This includes (1) the effect of the treatment on participants’ per-
ceived change in model explanations, (2) the effect of participants’
perceived change in the explanation’s consistency with their do-
main knowledge on their objective trust gain, (3) the effect of partic-
ipants’ perceived change in the explanation’s consistency with their
domain knowledge on their subjective satisfaction gain, and (4) the
effect of participants’ perceived change in model accuracy on their
objective trust gain. As a result, cross-group equality constraints
are only imposed across groups for the parameter of each of these
4 paths. The fit statistics we have obtained for the final model are
𝑝 (𝜒2) = 0.017,𝐶𝐹𝐼 = 0.960,𝑇𝐿𝐼 = 0.930, 𝑅𝑀𝑆𝐸𝐴 = 0.057, 𝑆𝑅𝑀𝑅 =

0.055. Although the 𝜒2 value is statistically significant, which may
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(a) Path analysis result in Experiment 2.1 (Phase 1 irrelevant)

(b) Path analysis result in Experiment 2.2 (Phase 1 relevant)

Figure 9: Path analysis results of the proposed model in Ex-
periment 2. Standardized path coefficients are reported, and
∗, ∗∗, ∗ ∗ ∗ represent significance level of 𝑝 < 0.05, 𝑝 < 0.01 and
𝑝 < 0.001, respectively. Dashed lines represent insignificant
paths. Bold lines highlight paths with cross-group equality
constraints on the coefficients before standardization.

indicate an inadequate model fit, many existing literature on struc-
tural equation modeling has argued that the Chi-squared test of
model fit is strongly influenced by sample size, and the null hypoth-
esis of perfect fit in this test may be unrealistic and implausible in
most practical work [12, 42]. Thus, our model can still be consid-
ered as fitting the data reasonably well as all other tests satisfy the
empirical standards. Figure 9 presents the path coefficient estimates
and the results of significance testing of the final path model10.

As shown in Figure 9, our hypothesis that the first mediation step
of the treatment effects is whether people can perceive the change in
model explanations after an update (i.e., H2.1) has been confirmed
in both sub-experiments. Then, aligning with our hypothesesH2.2,
we indeed find that participants’ perceived change in model expla-
nations significantly affects their perceived change in the model
explanation’s consistency with their domain knowledge, and the
direction of this impact depends on which sub-experiment they
took part in. For our hypothesis H2.3, it is partially supported—On
the one hand, we find people’s perceived change in the model ex-
planations significantly increases their perceived accuracy of the AI
model after the model update; this is consistent with what we have
observed in Experiment 1. On the other hand, for the hypothesized

10Since variances are likely unequal among groups, even if the raw value of a path
coefficient is constrained to be a same value across the two sub-experiments, the
standardized coefficients are computed on a per group basis and can be unequal.

direct effect of people’s perceived change in the model explanation’s
consistency with their domain knowledge on their perceptions of
the AI model’s accuracy, we only find it to be significant in Experi-
ment 2.2. Finally, for H2.4, we find that people’s objective trust in
the AI model is only impacted by people’s perceived change in the
model explanation’s consistency with their own knowledge after
the model update. However, changes in their subjective trust in
and satisfaction with the AI model are positively affected by both
people’s perceived change in the model explanation’s consistency
with their domain knowledge and their perceived change in the
model’s accuracy after the model update, although the magnitude of
effects for the former is consistently larger. Putting all intermediate
effects together, the opposite directions of the subjective trust and
satisfaction change that we observe in the two sub-experiments
are mainly caused by the opposite sign of the coefficient of the
causal path from people’s perceived change in explanation to their
perceived change in how consistent the explanations are compared
to their prior knowledge.

5 DISCUSSIONS
In this section, we provide further discussions of our results as well
as their implications, and discuss the limitations and future work.

5.1 The role of domain knowledge
Comparing the results we have obtained from the two experiments,
we indeed find that the effects of model explanation updates on end-
users’ trust in and satisfaction with the AI model are moderated by
the level of domain knowledge people have in the decision making
domain. While how much users are willing to accept the AI model’s
recommendations (i.e., people’s objective trust in the AI model) is
not significantly affected by the AI explanation updates regardless
of their prior knowledge level, their subjective feelings of the AI
model (e.g., subjective trust and satisfaction) are affected by the AI
explanation updates when they have some prior knowledge in the
task domain. In fact, as shown in Figure 9, people’s perceived change
in the explanation’s consistency with their domain knowledge
largely dominates their perceived change in the model accuracy
in influencing their trust in and satisfaction with the AI model
after the update. Similarly, if we compare the standardized path
coefficients estimated for the effects of people’s perceived change
in the model accuracy on the changes in their trust and satisfaction
between Figure 4 and Figure 9, we can also see those in Figure 9
are consistently smaller, indicating decreased impacts for people’s
perceived change in the model accuracy when people have domain
knowledge in the tasks. All of these highlight the key role that users’
prior knowledge in a domain plays when they observe explanation
updates in an AI model.

One possible explanation for the different results that we see in
the two experiments is that without additional information, people
may only be able to make sense of the feature contribution expla-
nations if they have some domain knowledge about the task. For
example, for participants working on the poisonous mushroom
prediction task, while they might notice the change in model ex-
planations after a model update, they might not be able to judge
whether the new patterns utilized by the model were more or less
meaningful; so, they simply reacted to different AI explanations
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similarly. On the contrary, participants performing the loan default
prediction task might find it rather straightforward to apply their
prior knowledge (i.e., a proxy/heuristic of what is meaningful) and
focus more on analyzing how consistent the AI explanation was
with their knowledge, when evaluating the quality of the updated
explanations [63]. This highlights the importance of helping end-
users to make sense of explanations when they have limited prior
knowledge in the task domain. To this end, one promising direction
is to supplement explanations of AI models with explanations of the
underlying data [4], which in effect may help people establish some
“knowledge” or data-driven insights about the domain. Moreover,
our findings on how users adjust their subjective trust in and satis-
faction with the updated AI model when they have some knowledge
in the task domain is largely consistent with what we would expect
from users’ reactions to explanations of a static AI model. This
implies that without additional information, users are unlikely to
interpret “human-meaningless” explanations as revealing novel
insights even in the context of AI models getting updated.

5.2 On people’s perceived change in model
accuracy after a model update

An interesting finding we consistently see from both experiments
is that the dissimilarity level between the model explanation before
and after the update positively affect people’s perceived accuracy
increase of the model. As discussed earlier, we conjecture that this
may be resulted from a combination of two factors. First, people
may use the similarity level between the model explanations as
a heuristic to gauge how different the two models’ accuracy is,
and they associate less similar model explanations with larger dif-
ferences in model accuracy. Second, people may have a biased
belief/misconception that a model update will always result in a
“better” model, due to their day-to-day experience (e.g., the newer
generation of a product is always advertised as having improved
performance). Thus, people may consider updated models with less
similar explanations as having a larger accuracy improvement.

Another interesting observation is that in those cases where
people have some domain knowledge (i.e., Experiment 2), while
we hypothesize that the similarity level between the model expla-
nations before and after the update will indirectly affect people’s
perceptions of the model accuracy through their perceptions of the
explanation’s consistency with their prior knowledge, our results
show that this is not always the case—we only observe this indirect
effect in Experiment 2.2 when the update results in a decrease of
consistency between the model’s explanations and people’s prior
knowledge. In fact, in Experiment 2.1, the correlation between
people’s perceived change in model accuracy and their perceived
change in the model explanation’s consistency with their domain
knowledge is quite weak (Pearson’s 𝑟 = 0.135). We speculate that
this asymmetric effect is observed because the model explanation
update in Experiment 2.1 naturally aligned with people’s expecta-
tions, while the explanation update in Experiment 2.2 did not. In
other words, most people might believe that the updated model
should utilize more information that they (i.e., humans) consider
as “predictive” to make decisions. Therefore, participants might get
“shocked” by the insensible updates that they saw in Experiment
2.2, so that such violation of expectation became a key driver of

the decrease in their perceived model accuracy. On the other hand,
participants in Experiment 2.1 might perceive the updated model
explanation as simply meeting their expectation without giving
extra credit to the updated model’s performance.

5.3 Implications for designing AI explanations
during updates

Our findings imply a few important implications for designing effec-
tive AI explanations during the model update. First, as we find that
people’s subjective trust in and satisfaction with the AI model dur-
ing the model update can largely be influenced by the consistency
of the AI explanations with their domain knowledge, novel methods
should be developed for incorporating human expertise into the
model development/updating process or the explanation genera-
tion process. This is closely connected to the line of research on
human-in-the-loop machine learning [29], in which feedback is so-
licited from humans to improve and update the AI model. Indeed, as
shown by many previous studies [18, 32, 33, 66], integrating expert
knowledge into AI models may not only enhance the robustness
and trustworthiness of the models, but also satisfy the expectations
of users for expert-informed and user-centric explanations.

However, it is also possible that people may inappropriately de-
crease their trust in and satisfaction with an AI model because the
updated AI explanations contain some novel and truly meaningful
patterns which people are not aware of themselves. Indeed, one of
the greatest promises of AI technologies is their strong capabilities
in processing huge amounts of data to automatically identify hid-
den patterns and to generate data-driven insights. To avoid these
undesirable scenarios, after a model update, instead of simply pre-
senting the updated model explanations, it may be helpful to put
more emphasis on the components of the explanations that have
been changed, and provide more insights into why these changes
occur. Compared to plainly explaining the updated model’s pre-
diction, highlighting the changes in the explanation may attract
user’s attention to the updated part of the explanation. Additional
information on why explanation changes occur may enable peo-
ple to go beyond their potentially limited domain knowledge in
evaluating the “utility” of the changes, supporting them to better
calibrate their perceptions of the updated model’s trustworthiness.

5.4 Limitations and future work
Our study have a few limitations. First, we adopted a relatively
simplified setting in our experiment to study how changes in AI
explanations during the model update affect users’ perceptions
and usage of the AI model—the explanation used is simple (i.e.,
the top-2 important features), the task instances are selected to
have participants repeatedly observe the AI model’s behavior in the
same local area, and the experimental treatments are designed with
rather salient changes in model explanations after the AI model gets
updated. We acknowledge that in the real world, the explanations
of an AI model can be much more complex—especially when trying
to explain an AI model’s global behavior—and the model updates
may have low chance of resulting in fundamentally different expla-
nation patterns. However, we believe the study we conducted on
the simplified setting had two important advantages and provided
a starting point for more future research along this line. First, by
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using simple explanations and restricting participants’ attention
to the AI model’s local behavior, we maximized the possibility for
participants to successfully form a mental model of the AI model
before the update. This is critical because it allowed us to rule out
the possibility that any null result of our study is simply caused by
participants’ inability to understand how the AI model works before
the update. Second, by having participants in some treatment (e.g.,
the low similarity treatment) observe very distinct explanations
after the model update, we pushed our experimental manipulations
to the extreme to maximize their possible effects, if any. In this
sense, one can argue that the empirical effects of model explanation
changes that we found in this study are likely the upper-bound
estimates. These upper-bound estimate results can still be quite
informative. For example, even in our setting where the changes of
model explanations are very salient, we did not find users’ objective
trust in the AI model is reliably affected by explanation changes
during the model update. This may imply that in a more practical
setting where the explanation changes during the model update
are much more subtle, users’ objective trust in the AI model is also
unlikely to be influenced.

Another limitation of our study is the choice of some measure-
ments. For example, we used “agreement fraction” (i.e., the chance
for participants’ final prediction in a task to agree with AI) to quan-
tify participants’ objective trust in the AI model. Although widely
used in the literature [7, 15, 23, 52, 55, 57, 68, 95], we acknowledge
that this metric may reflect the natural agreement between people’s
independent decisions and the AI recommendations to some extent.
In practice, agreement fraction is often the only metric that can be
adopted to objectively quantify people’s trusting behavior when no
information about people’s own independent decision is available.
In our study, however, we collected participants’ initial prediction
in each task, which allowed us to quantify participants’ objective
trust in the AI model using “switch fraction” (i.e., the fraction of
tasks for which the participant’s final prediction agreed with the
model’s prediction, among all tasks where the participant’s initial
prediction disagreed with the model’s prediction), another metric
commonly used in previous studies [36, 93, 95]11. We found that
when using agreement fraction or switch fraction as the objective
trust metric, the corresponding values for participants’ objective
trust gain are highly correlated (e.g., Pearson correlations are 0.69,
0.63, and 0.66 for Experiment 1, 2.1, 2.2, respectively), suggesting
agreement fraction still reflects participants’ true willingness to
adopt the AI recommendation to a large extent. As another limi-
tation, the dependent variables we measured in this study are not
comprehensive. Future studies should be carried out to better un-
derstand how changes in AI explanations during the model update
may affect other aspects of user experience and performance (e.g.,
influence user’s trust calibration and understanding).

In general, we caution the readers to not over-generalize our
results to other settings. Our study was conducted on two selected
types of decision making domains, and how model explanation up-
dates affect people’s perceptions and usage of the AI model in other
domains may be impacted by nuances in those domains. For exam-
ple, explanation formats in domains like image classification [2]

11We chose to use agreement fraction to quantify objective trust in our main study
because switch fraction is not well-defined for each participant.

and text classification [54] can be very complicated, task domains
such as autonomous driving can be highly situation-dependent
as to the need of explanations [89], and it’s hard to even provide
scalable explanations for unsupervised learning models [61] used
in human-AI co-writing, chatbot, or AI art generator. To simplify
the experimental design, in our study, we also only investigate into
the effects of model explanation updates when the AI model’s pre-
diction does not change, while in reality changes in AI predictions
and explanations often go hand in hand. Our study results may not
hold for settings where decision makers have significant domain ex-
pertise in the decision making domain or where the decision stakes
are especially high (e.g., doctors making life-or-death decisions),
and the effects of AI explanation updates may also be moderated
or mediated by other factors such as the accuracy level of the AI
model. Overall, future studies should be conducted to explore the
effects of AI explanation updates in more realistic settings and di-
verse domains, for different types of end-users, and explore in more
details how these effects may be moderated by various factors.

6 CONCLUSION
In this work, we study how the level of similarity between model
explanations before and after the update of an AI model will af-
fect end-users’ perception and usage of the model in AI-assisted
decision making. Via two randomized human-subject experiments,
we show that people are able to perceive the changes in AI model
explanations that are caused by a model update. Moreover, while
the perceived model explanation changes have little impact on peo-
ple’s trust in and satisfaction with the AI model when people have
limited domain knowledge in the decision making task, we find
that when people have some prior knowledge in the task domain,
their subjective trust in and satisfaction with the AI model can be
significantly affected by the updates in AI explanations. Results
of our path analyses further illustrate that the updates in AI ex-
planation may change people’s trust in and satisfaction with the
AI model both via changing their perceived model accuracy, and
via changing their perceived consistency of AI explanations with
their domain knowledge. Our work highlights a pressing need for
more experimental studies on understanding the effects of AI ex-
planations during an AI model update, and we hope this study can
inspire more work in this direction.
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A TASK INSTANCES IN PHASE 2

Table A1: Top-2 important features shown in Phase 2 task instances, in Experiment 1

Idx M0(M1)-1 M0(M1)-2 M2-1 M2-2 M3-1 M3-2

1 cap-surface=smooth gill-spacing=close habitat=leaves gill-spacing=close habitat=leaves population=several
2 cap-surface=smooth gill-spacing=close habitat=grasses gill-spacing=close population=several habitat=grasses
3 cap-surface=smooth gill-spacing=close habitat=paths gill-spacing=close population=several habitat=paths
4 cap-surface=smooth gill-spacing=close habitat=urban gill-spacing=close habitat=urban population=several
5 cap-surface=smooth gill-spacing=close habitat=urban gill-spacing=close habitat=urban population=several
6 stalk-shape=enlarging gill-spacing=close habitat=urban stalk-shape=enlarging habitat=urban population=several
7 stalk-shape=enlarging gill-spacing=close habitat=urban stalk-shape=enlarging habitat=urban population=several
8 cap-surface=fibrous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=scattered stalk-shape=tapering
9 cap-surface=fibrous gill-spacing=crowded gill-spacing=crowded habitat=woods stalk-shape=tapering habitat=woods
10 cap-surface=fibrous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=abundant stalk-shape=tapering
11 cap-surface=fibrous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=abundant stalk-shape=tapering
12 gill-spacing=crowded cap-surface=fibrous gill-spacing=crowded habitat=woods population=scattered habitat=woods
13 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close population=several stalk-shape=enlarging
14 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging population=clustered
15 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close population=several stalk-shape=enlarging

Table A2: Top-2 important features shown in Phase 2 task instances, in Experiment 2.1 (Phase 1 irrelevant)

Idx M0(M1)-1 M0(M1)-2 M2-1 M2-2 M3-1 M3-2

1 addr_state=AL issue_d=Jun loan_amnt=>$20,000 fico_score=Fair loan_amnt=>$20,000 fico_score=Fair
2 addr_state=AL issue_d=Jun fico_score=Fair issue_d=Jun fico_score=Fair annual_inc=<$40,000
3 addr_state=AL issue_d=Jun loan_amnt=>$20,000 issue_d=Jun loan_amnt=>$20,000 annual_inc=$80,000 $100,000
4 addr_state=CA earliest_cr_line=Aug fico_score=Good addr_state=CA fico_score=Good annual_inc=>$100,000
5 addr_state=CA earliest_cr_line=Aug fico_score=Good addr_state=CA fico_score=Good loan_amnt=<$5,000
6 addr_state=CA earliest_cr_line=Aug fico_score=Good addr_state=CA fico_score=Good annual_inc=$40,000 - $60,000
7 addr_state=CA earliest_cr_line=Aug fico_score=Good addr_state=CA fico_score=Good loan_amnt=$10,000 $20,000
8 addr_state=CA earliest_cr_line=Aug fico_score=Good addr_state=CA fico_score=Good loan_amnt=<$5,000
9 addr_state=CA issue_d=Mar loan_amnt=$5,000 - $10,000 addr_state=CA loan_amnt=$5,000 - $10,000 annual_inc=>$100,000
10 addr_state=CA issue_d=Mar fico_score=Good addr_state=CA fico_score=Good annual_inc=$40,000 - $60,000
11 addr_state=CA issue_d=Mar loan_amnt=$5,000 - $10,000 addr_state=CA loan_amnt=$5,000 - $10,000 annual_inc=>$100,000
12 addr_state=CA issue_d=Mar fico_score=Good addr_state=CA fico_score=Good loan_amnt=<$5,000
13 addr_state=CA issue_d=Mar fico_score=Good addr_state=CA fico_score=Good loan_amnt=$10,000 $20,000
14 addr_state=AL issue_d=Jun fico_score=Fair issue_d=Jun fico_score=Fair addr_state=AL
15 addr_state=AL issue_d=Jun issue_d=Jun addr_state=AL annual_inc=<$40,000 addr_state=AL

Table A3: Top-2 important features shown in Phase 2 task instances, in Experiment 2.2 (Phase 1 relevant)

Idx M0(M1)-1 M0(M1)-2 M2-1 M2-2 M3-1 M3-2

1 fico_score=Fair annual_inc=<$40,000 fico_score=Fair addr_state=AL addr_state=AL earliest_cr_line=Sep
2 fico_score=Fair annual_inc=<$40,000 fico_score=Fair issue_d=Jun addr_state=AL issue_d=Jun
3 fico_score=Fair annual_inc=<$40,000 fico_score=Fair issue_d=Jun earliest_cr_line=Sep issue_d=Jun
4 fico_score=Fair annual_inc=<$40,000 fico_score=Fair issue_d=Sep addr_state=AL earliest_cr_line=Sep
5 fico_score=Good annual_inc=$40,000 - $60,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Mar
6 fico_score=Good annual_inc=$40,000 - $60,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Oct
7 fico_score=Good annual_inc=$40,000 - $60,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Oct
8 fico_score=Good annual_inc=$40,000 - $60,000 fico_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug
9 fico_score=Good annual_inc=$40,000 - $60,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Oct
10 fico_score=Good loan_amnt=<$5,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Mar
11 fico_score=Good loan_amnt=<$5,000 fico_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug
12 fico_score=Good loan_amnt=<$5,000 fico_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug
13 fico_score=Good loan_amnt=<$5,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Sep
14 fico_score=Good loan_amnt=<$5,000 fico_score=Good addr_state=CA addr_state=CA issue_d=Mar
15 fico_score=Fair annual_inc=<$40,000 fico_score=Fair issue_d=Mar earliest_cr_line=Sep annual_inc=<$40,000
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